Volume 3, Issue 1, February 2014, Page: 36-44
Calibrating the Rainfall-Runoff Model GR4J and GR2M on the Koulountou River Basin, a Tributary of the Gambia River
Vieux Boukhaly TRAORE, Laboratoire d’Hydraulique et de Mécanique des Fluides (LHMF), Université Cheikh Anta Diop de Dakar (UCAD), Sénégal. BP 5005 Dakar-Fann
Soussou SAMBOU, Laboratoire d’Hydraulique et de Mécanique des Fluides (LHMF), Université Cheikh Anta Diop de Dakar (UCAD), Sénégal. BP 5005 Dakar-Fann
Séni TAMBA, Ecole Polytechnique de Thiès (EPT), BP 10 Thiès, Sénégal
Sidy FALL, Office du Lac de Guiers, Société d’Aménagement et d’Exploitation des Terres du Delta du fleuve Sénégal et des Vallées du fleuve Sénégal et de la Falémé (SAED)
Amadou Tahirou DIAW, Laboratoire d’Enseignement et de Recherche en Géomatique (LERG); Campus Universitaire de l’Ecole Supérieure Polytechnique-Dakar , Sénégal. BP 5005 Dakar-Fann
Mohamed Talla CISSE, Université de Thiès. Thiès SENEGAL
Received: Jan. 13, 2014;       Published: Feb. 20, 2014
DOI: 10.11648/j.ajep.20140301.15      View  4037      Downloads  609
Rainfall runoff modelling is the first step in water resources management. It is the only way to simulate the hydrological behavior of the basin for a good evaluation of the potentiality of this in term of water production. Many approaches are actually in use. In physically distributed models, deterministic relations issued from conservation laws of physics (mass conservation, moment momentum conservation) are solved to describe the hydrological processes generating flow and their interaction. A DEM that should be as complete as possible is associed. Complexity of the equations to be solved and the huge amount of required data, uncertainty in these data make these models of limited use. Conceptual rainfall-runoff models are often preferred by hydrologists. These models are based on equations relating in a realistic manner the different terms of the hydrological cycle. They are simpler than determistic models and more flexible, Conceptual models are generally global. According to the way hydrological cycle terms are taken into account, conceptual model can be classified as empirical or not. The aim of this paper is to evaluate the availability of water in the Koulountou river basin, a tributary of Gambia River. This river basin should reinforce the water resource in a neighboring Kayanga river basin. Two empirical models at daily and monthly scale, the GR4J and GR2M have been used to describe the hydrological behavior of this basin. These models have been realized by the CEMAGREF, a French research Office. They use as inputs daily or monthly rainfall and potential evapotranspiration and river basin area, and give as output daily or monthly runoff. The first step before applying a hydrological model is to calibrate it that is to estimate the best parameters that fit the outputs in a given period. The Nash criterion has been used as goodness-of-fit criterion. Model performs satisfactory when this criterion is greater than 0.70 according to available data. A period from 1971 to 1994 has been selected. This period have been divided into three parts: one for calibration (1971-1978), one for validation (1978-1986), and the last for application (1987-1994). The results we obtain shows that GR4J and GR2M performs well in the Koulountou river basin since the Nash criterion is greater than 0.8.
Rainfall-Runoff Models, GR4J, GR2M, Validation, Calibration, Nash criterion, Koulountou River Subbasin, Gambia River basin
To cite this article
Vieux Boukhaly TRAORE, Soussou SAMBOU, Séni TAMBA, Sidy FALL, Amadou Tahirou DIAW, Mohamed Talla CISSE, Calibrating the Rainfall-Runoff Model GR4J and GR2M on the Koulountou River Basin, a Tributary of the Gambia River, American Journal of Environmental Protection. Vol. 3, No. 1, 2014, pp. 36-44. doi: 10.11648/j.ajep.20140301.15
Koffi, F.K. and Monique BERNIER, Droh L. GONÉ, Mahaman B. SALEY, René LEFÈBVRE, Nagnin SORO et Aimé KOUDOU, (2007) «Integrating geo space in a distributed hydrological model for the simulation of water flow in the humid tropics of Ivory Coast (West Africa) »." Journal Remote Sensing, 2007, vol. 7, No. 1-2-3-4, pp. 217-23
Donelly-Makowecki, L. M. and Moore, R. D., (1999) «Hierarchical testing of three rainfall-runoff models in small forested catchments ». Journal of Hydrology, 219(3/4), 136-152.
Hilary McMillan, Martyn Clark, Ross Woods, Maurice Duncan, MS Srinivasan, Andrew Western & Dave Goodrich, (2010) « Improving perceptual and conceptual hydrological models using data from small basins». IAHS Publ. 336, pp. 264-269
Singh, V.P. and Woolhiser, D.A.,(2002) « Mathematical modeling of watershed hydrology ». Journal of Hydrologic Engineering, vol. 7, n° 4, p. 270-292
Dilip Kumar, (2011) « Distributed rainfall Runoff modeling». International journal of earth sciences and engineering, pp.270-275
K.Narasayya,U.C.Roman, B.L.Meena, S.Sreekanth, S.Naveed Ali, (2013) «Prediction of storm-runoff using physically based hydrological model for burhanpur watershed, India » International journal of remote sensing and geosciences (IJRSG), vol.2, pp.76-85
Zhiyu Liu and Ezio Todini, (2002) « Towards a comprehensive physically-based rainfall model ».Hydrology and Earth system sciences,6(5), pp . 859-881
Yuyu Zhou and Y.Q.Wang,(2008) « a distributed and object-oriented rainfall-runoff simulation model with hich spatial resolution impervious surface » .annual conference Portland, Oregon, pp.1-12.
Md. Sharif Imam Ibne Amir, Mohammad Masud Kamal Khan, Mohammad Golam Rasul, Raj H. Sharma, and Fatema Akram,(2013) « Automatic multi-objective calibration of rainfall runoff model for the Fitzroy basin, queensland, Australia ». International journal of environmental science and development, vol 4, pp .311-315
Vahid Nourani, Arash Roughani and Mekonnen Gebremichael, (2011) « TOPMODEL Capability for rainfall-runoff modeling of the ammameh watershed at different time scales using different terrain algorithms». Journal of urban environment engineering, vol.5.n.1, PP.1-14
Y. Tang, P. Reed, K. van Werkhoven, and T.Wagener, (2007) « Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis » Water Resources Research, Vol. 43, pp.1-14.
P.C. Shakti, N.K. Shrestha and P. Gurung, (2010) « Step wise multi-criteria performance evaluation of rainfall-runoff models using WETSPRO » Journal of hydrology and meteorology,vol.7 ,pp.18-29
APIP, Takahiro SAYAMA, Yasuto TACHIKAWA and Kaoru TAKARA,(2008) « Lumping of physically-based distributed model for sediment runoff prediction in a catchment scale» annual journal of hydraulic engineering, JSCE, vol.52, PP.43-47
XU,Z.X.,Takeuchi,K.,and Ishidaira,H.,(2002) « A conceptually based-distributed rainfall-runoff model applied in arid regions » .International conference on urban hydrology for the 21st century pp.45-60
Kokkonen, T. S., and A. J. Jakeman,(2001) « A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications ».Water Resources Research 37(9), pp. 2345– 2352
Perrin, C., Michel, C., Andréassian, V., (2003) « Improvement of a parsimonious model for streamflow simulation». Journal of Hydrology, 279(1-4), pp. 275-289.
Makhlouf, Z.and Michel, C., (1994) « A two-parameter monthly water balance model for French watersheds ». Journal of Hydrology 162, 299-318.
Huard, D. and A. Mailhot ,(2008) « Calibration of hydrological model GR2M using Bayesian uncertainty analysis ». Water Resour.Vol 44, W02424, pp.1-19.
Perrin, C. and Littlewood, I.G. (2000) « A comparative assessment of two rainfall-runoff modelling approaches: GR4J and IHACRES». Proceedings of the Liblice Conference (22-24 September 1998), V. Elias and I.G. Littlewood (Eds.), IHP-V, Technical Documents in Hydrology n° 37, UNESCO, Paris, pp. 191-201.
Perrin, C., Michel, C. et Andréassian, V., (2001) «Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments ». Journal of Hydrology, 242(3-4),pp .275-301.
Le Moine, N., V. Andréassian, C. Michel & C. Perrin, (2005) «How to Account For Groundwater Exchanges In Rainfall-Runoff Models In Zerger, A. and Argent, R.M.(eds) MODSIM » International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, pp. 2932-2938
Oudin,L.F. Hervieu,C.Michel, C.Perrin,V.Andreassian, F.Anctil and C. Loumagne (2005) « Which potential evapotranspiration input for a lumped rainfallrunoff model?: Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modeling ». Journal of Hydrology 303(1-4),pp. 290-306
Dhemi Harlan, Muljana Wangsadipura., and Cecep Muhtaj Munajat,( 2010) « Rainfall-runoff modeling of citarum hulu river basin by using gr4j». Proceedings of the World Congress on Engineering 2010 Vol II,pp. 1-5.
Mouelhi,S. , Michel, C., Perrin, C. et Andréassian V,(2006) « Stepwise development of a two parameter monthly water balance model ».J. Hydrol. 318(1-4), 200-214.
Maryam Zolfaghari, Mohamad Mahdavi, Ali Rezaei, Ali Salajegheh,(2013) « Evaluating GR2M Model in Some Small Watersheds of Iran (Case Study Gilan and Mazandaran Provinces) ». Journal of Basic and Applied Scientific Research; 3(2), pp. 463-472.
Madsen, H., G. Wilson, and and H. C.Ammentorp, (2002) « Comparison of different automated strategies for calibration of rainfall-runoff models». Journal of Hydrology 261(1-4) pp .48-59.
Nash, J.E. and Barsi, B.I., (1983) «A hybrid model for flow forecasting on large catchments» .J. Hydrol., 65, pp .125-137.
Krause, P., Boyle, D. P., Base, F., 2005, Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, Vol: 5, pp .89–97
Loumagne, C., Michel, C., Palagos, B., Baudez, J.C. and Bartoli, F. (1999) « From a global to a semi-distributed approach in rainfall-runoff modelling ». La Houille Blanche, 6, pp .81-88
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L, (2007) « Model evaluation guidelines for systematic quantification of accuracy in watershed simulations ». Transactions of the ASABE. Vol: 50(3), pp. 885-900
Browse journals by subject