Special Issue on Earth, Energy & Environment

Submission Deadline: Jan. 1, 2020

This special issue currently is open for paper submission and guest editor application.

Please download to know all details of the Special Issue

Special Issue Flyer (PDF)

  • Special Issue Editor
    • Narcisse Malanda
      Mechanical, Energy and Engineering Laboratory, Higher National Polytechnic School, Marien Ngouabi University, Brazzaville, Congo
    Guest Editors play a significant role in a special issue. They maintain the quality of published research and enhance the special issue’s impact. If you would like to be a Guest Editor or recommend a colleague as a Guest Editor of this special issue, please Click here to fulfill the Guest Editor application.
    • Laurent Matini
      Department of Chemistry, Higher Normal School, Marien Ngouabi University, Brazzaville, Congo
    • Guy Dieudonné Moukandi-Nkaya
      Mechanical, Energy and Engineering Laboratory, Higher National Polytechnic School, Marien Ngouabi University, Brazzaville, Congo
    • Paul Louzolo-Kimbembe
      Department of Chemistry, Higher Normal School, Marien Ngouabi University, Brazzaville, Congo
    • Pregidi Mbayi
      Mechanical, Energy and Engineering Laboratory, Higher National Polytechnic School, Marien Ngouabi University, Brazzaville, Congo
    • Bernard Mabiala
      Brazzaville, Brazzaville, Congo
  • Introduction

    Ensuring good quality water for the population is an effective health protection measure. However, in the Republic of Congo, drinking water shortages are particularly acute in the cities of Pointe-Noire and Brazzaville, where the populations concerned are forced to build underground reinforced concrete tanks for the storage of large quantities of water, thus helping to alleviate this shortage. However, water stored in reinforced concrete tanks, which are porous in nature, installed in wetlands and polluted, is likely to be crossed by an aggressive diffuse current caused by pollution of the surrounding environment due to human activities, untreated landfills, or other types of pollution. Entropic activities and untreated garbage dumps significantly alter wet sites, thus promoting the dissolution and migration of pollutants to groundwater at depth by gravity and through the underlying soils.
    This weakness constitutes preferential routes for the diffusion via the capillary and porous network of aggressive substances dissolved in the water table, which is flush with the natural ground (soil), thus altering the quality of the water stored inside the reservoir. This has a negative impact on the durability of the storage tank. The problem of optimizing the durability of the concretes constituting the underground tank in relation to external influences and the tightness of the walls then becomes a recurring problem. This durability induced by the transfer properties is also evident for all structures subjected to aggressive environments, which can lead to premature degradation of the concrete material. For these concrete tanks, this durability is not only based on their self-stability in view of the stresses caused by external actions, but also on their ability to prevent exchanges between the surrounding (aggressive) environment and the interior of the structure, thus avoiding the deterioration of the quality of the stored water.
    Recent studies conducted by Chen courant (2011) show that the permeability of concrete represents the ability of porous material to be crossed by a fluid under a pressure gradient. It depends strongly on the porous network, its possible cracking and the water content of the material. This permeability is commonly used to assess the durability of concrete structures, especially when they are exposed to harmful environments. Also, in the case where the concrete structure is in contact with water, depending on the constitution of the cementitious matrix, permeability can be understood as the ability of the porous medium to allow a fluid to pass through it and completely fill the interconnected pores.
    In this perspective, a study based on the physico-chemical analysis of water stored in underground reservoirs was carried out in order to assess the mineral pollution of water stored under the influence of the external environment. The aim is to highlight the lack of reliability in terms of waterproofing, reinforced concrete walls and, ultimately, the problem of transferring pollutants through the walls of the underground tank.

    Aims and Scope:

    1. Underground tanks
    2. Water storage
    3. Diffusion
    4. Pollutant
    5. Reinforced concrete
    6. Porosity

  • Guidelines for Submission

    Manuscripts can be submitted until the expiry of the deadline. Submissions must be previously unpublished and may not be under consideration elsewhere.

    Papers should be formatted according to the guidelines for authors (see: http://www.ajep.org/submission). By submitting your manuscripts to the special issue, you are acknowledging that you accept the rules established for publication of manuscripts, including agreement to pay the Article Processing Charges for the manuscripts. Manuscripts should be submitted electronically through the online manuscript submission system at http://www.sciencepublishinggroup.com/login. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal and will be listed together on the special issue website.

  • Published Papers

    The special issue currently is open for paper submission. Potential authors are humbly requested to submit an electronic copy of their complete manuscript by clicking here.

Browse journals by subject